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Specific catalyst design and external manipulation of surface reactions by controlling accessible physical or
chemical parameters may be of great benefit for improving catalytic efficiencies and energetics, product yield,
and selectivities in the field of heterogeneous catalysis. Studying a realistic spatiotemporal one-dimensional
model for CO oxidation on Pt(110) we demonstrate the value and necessity of mathematical modeling and
advanced numerical methods for directed external multiparameter control of surface reaction dynamics. At the
model stage we show by means of optimal control techniques that species coverages can be adjusted to desired
values, aperiodic oscillatory behavior for distinct coupled reaction sites can be synchronized, and overall
reaction rates can be optimized by varying the surface temperature in space and time and the CO and O2 gas
phase partial pressure with time. The control aims are formulated as objective functionals to be minimized
which contain a suitable mathematical formulation for the deviation from the desired system behavior. The
control functionspCOstd (CO partial pressure), pO2

std (O2 partial pressure), and Tsx,td (surface temperature
distribution) are numerically computed by a specially tailored optimal control method based on a direct
multiple shooting approach which is suitable to cope with the highly nonlinear unstable mode character of the
CO oxidation model.
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I. INTRODUCTION

Heterogeneous catalysis is of central importance in many
areas of chemistry, ranging from exhaust gas after-treatment
to selective synthesis of chemical compounds. Today, in
chemical industries nearly 70% of all basic materials are fab-
ricated by use of heterogeneous catalytic reactions[1].

In recent years modern experimental techniques have pro-
vided deep insight into microscopic details of surface reac-
tion dynamics with high spatial and temporal resolution
[1,2]. These data help to develop realistic mathematical mod-
els based on mechanistic details for the surface chemistry in
many important applications of heterogeneous catalysis[3],
for example, exhaust gas catalysts[4]. If such models quan-
titatively account for the behavior observed in experiments
they can be used for performingin silico studies[5], testing
hypotheses for reaction mechanisms, and motivating and se-
lecting further experimental investigations to clarify vague
mechanistic issues. Thus, catalysis becomes an interdiscipli-
nary science[3] bringing together scientists from surface
physics, chemistry, engineering, and recently also from sci-
entific computing and mathematics. In particular, this mutual
interplay between theoretical and experimental approaches is
expected to fertilize basic research also in various other sci-
entific areas related to the study of complex systems, which
are abundant, for example, in biology[6,7].

An ancient dream of the chemists and to some extent at
the core of all chemical research is the manipulation of
chemical reactivity at will by the experimenter[8]. Design-
ing complex organic compounds for use in the pharmaceuti-
cal industry, engineering reactors that perform desired tasks,

optimizing product yields and selectivities, and reducing
costs, energy consumption, and environmental pollution to a
minimum are questions related to the issue of microscopic
control of chemical reactions[8]. Many of these questions
involve optimum performance purposes. Much the same as
for surface analysis techniques, both experimental and mod-
eling approaches to control chemical surface reactions
started with well characterized systems like catalytic CO oxi-
dation on Pt(110) surface under UHV conditions[9]. Nowa-
days, experimental methods are available to investigate het-
erogeneous catalysis under more realistic conditions[10]
such as atmospheric pressure and on polycrystalline surface-
structures, but the investigation of microscopic control issues
for surface reaction dynamics is still in its infancy from both
the theoretical and experimental points of view[11,12]. This
is partly due to the fact that the influence of external factors
on complex spatiotemporal systems with nonlinearly inter-
acting components is generally very little understood, in par-
ticular if control inputs are spatially distributed[13]. In the
face of the overwhelming variety of possible dynamical
properties of controlled nonlinear systems a successful attack
seems hopeless without the help of mathematics. On the
other hand, noninvasive experimental techniques to access
microscopic control parameters either online or offline with-
out destroying the system itself have only recently been de-
veloped. But there is broad agreement that in the future it
will be possible to control catalytic reactions even on the
atomic scale[14].

In addition to the pioneering work of Ertl and co-workers
in the area of controlling spatiotemporal dynamics of CO
oxidation on Pt[9,11,12,15–17], several other attempts have
been made to control complex behavior in chemical reaction
systems. Chaos control ideas[18] have been used to design
wave propagation patterns in excitable media[19], propagat-*Electronic address: lebiedz@iwr.uni-heidelberg.de
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ing wave segments could be stabilized[20], and oscillatory
cluster patterns were induced in the photosensitive Belousov-
Zhabotinsky reaction[21]. In [22] control of spiral wave
movement in excitable media and its suppression have been
studied numerically by introducing spatial inhomogeneities
into the medium and turbulence control and synchronization
based on the Ginzburg-Landau equation model have been
investigated in[23]. Pertsovet al. [24] analyze spiral wave
control in cardiac tissue by small parameter gradients. In
nonlinear optics also feedback control of pattern formation
has been discussed[25].

Most of these studies are based on the introduction of a
feedback function for either local gradient control[19] or
global control[9,20,21] fed back into the system. The con-
troller design of the corresponding control systems is often
based on more or less empirical issues, for example, feed-
back functions chosen from physical insight or systematic
variation and adjusting of potential control parameters to
study the system’s output behavior. However, a systematic
way to control spatiotemporal chemical reaction dynamics
with respect to general control aims will undoubtedly require
the help of quantitative modeling and a wide ranging appli-
cation of advanced numerical methods[13]. Whereas in the
control engineering community often linear model approxi-
mations have been used to implement model based control,
the inherently nonlinear character of chemical reaction sys-
tems requires nonlinear control techniques for many practi-
cally relevant tasks[26]. In particular for the self-organizing
CO oxidation system we address in this work linear model
predictive control, applying an adaptive linearization of the
system dynamically around the actual transient state as well
known in dynamic matrix control(DMC) [27], is not ad-
equate for the following reason. A locally linearized model
cannot accurately account for system instabilities caused by
nonlinearities and system inherent positive feedback mecha-
nisms, but especially these instabilities over a nonlocal range
give rise to the temporal patterns observed in experiments
and simulations. Therefore, it is crucial to base a control
scheme on the fully nonlinear model equations which can
describe the self-organization behavior that is supposed to be
controlled or externally forced.

We have developed an optimization approach for address-
ing general nonlinear control issues in spatiotemporal chemi-
cal reaction systems. In[28,29] we demonstrated an applica-
tion of these ideas to manipulate concentration patterns in a
reaction-diffusion system modeling bacterial chemotaxis. By
controlling the influx of a chemical species we have shown
that desired cell concentration patterns can be induced into
the system and propagating waves can be modulated. The
use of specially tailored numerical methods for optimal con-
trol turned out to be crucial because of the unstable mode
character of pattern forming reaction-diffusion systems. In
combination with the large scale character of the optimal
control problem arising from spatial discretization of the par-
tial differential equation(PDE) models the latter makes nu-
merical optimization a very difficult task. In particular, for a
spatially homogeneous ordinary differential equation(ODE)
model [30] for the CO oxidation on Pt we have shown the
wide ranging capabilities of numerical optimal control for
the study and dynamic control of nonlinear chemical reaction

systems, pointing out their significance for control and signal
processing tasks in biological systems[31]. Here, we extend
the optimal control application to a one-dimensional(1D)
spatiotemporal model[32] for the CO oxidation on Pt(110)
to address distributed parameter control of spatiotemporal
dynamics in catalytic surface reactions.

Dubljevic et al. [33] recently proposed an alternative ap-
proach to model based specific control of distributed param-
eter systems. They use a target PDE which describes the
desired dynamical behavior in space and time and demon-
strate how this can be used for computing distributed control
functions which induce the desired behavior. While this
method works well for control aims which can be explicitly
formulated as trajectory behavior of the target PDE solution,
our optimization approach seems to be more flexible, and
quite general performance criteria like product yield and se-
lectivities can be formulated as control aims as well. Addi-
tionally we do not have to care too much about controllabil-
ity aspects because to a certain extent the optimal control
method automatically yields the(locally) best possible solu-
tion of the problem under consideration.

II. MODELING THE CONTROL PROBLEM

Here, we use methods similar to those proposed in[28] to
address microscopic control of surface reaction dynamics for
CO oxidation on Pt(110) in a model study. We choose a
realistic mean-field ordinary differential equation model for
surface coverages developed by and co-workers Ertl[30]
which describes the experimentally observed phenomena at
UHV fairly well. Since thermodynamic and kinetic data for
the elementary reaction steps like absorption, desorption of
CO and O2, surface diffusion of CO, and surface reconstruc-
tion can be estimated quite accurately from experimental
data, we model the temperature dependence of the rate coef-
ficients by Arrhenius type equations. The 1D spatiotemporal
model for CO oxidation on Pt according to[15] is

]u

]t
sx,td = DDu + k1pCOsCOs1 − u3d − k2u − k3uv,

]v
]t

sx,td = k4pO2
fs131w + s132s1 − wdgs1 − u − vd2 − k3uv,

]w

]t
sx,td = k5S 1

1 + expfsu0 − ud/dug
− wD ,

x P f0,Lg, t P f0, tendg,

ki = Aie
−EA

i /RTsx,td, i = 2,3,5 s1d

The preexponential factors, activation energies, and
model parameter values are taken from[30] and [15]:
D=40 mm2 s−1, sCO=1.0, s131=0.6, s132=0.4, u0=0.35, du
=0.05, k1=3.143105 s−1 mbar−1, k4=5.863105 s−1 mbar−1,
A2=33106 s−1, EA

2 =41.8 kJ/mol, A3=231016 s−1, EA
3

=158.8 kJ/mol,A5=102 s−1, andEA
5 =29.3 kJ/mol. The reac-

tion ratesk1 andk4 for the adsorption of CO and O2 on the
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surface do not significantly depend on small variations of the
local surface temperature, but only on the hitting rate of gas
phase molecules, which is influenced by the surrounding glo-
bal temperature[30].

In the model(1) usx,td describes the local surface cover-
age of CO,vsx,td the O2 coverage,wsx,td the fraction of
nonreconstructed surface area in the 131 phase, and 1
−wsx,td the fraction of surface area reconstructed into a 1
32 missing row structure[15]. All variables vary between 0
and 1 as functions of space and time. Due to the high acti-
vation energy for O diffusion on Pt at temperatures below
550 K, the O atoms are assumed to be immobile whereas the
CO diffuses on the surface(diffusion coefficientD).

There are three obvious parameters in the reaction system
which can be externally controlled as functions of time: the
gas phase partial pressurespCO and pO2

and the local tem-
peratureT entering the Arrhenius expressions for the rate

coefficientski =Aie
−EA

i /RT, i =2,3,5. It hasbeen shown re-
cently that the temperature can be controlled locally in space
by illumination of the metal surface with a laser spot
[11,12,17] whereas CO and O2 gas phase pressures are glo-
bal control parameters[9]. By using modern laser techniques
it turned out to be possible to write spatiotemporal tempera-
ture profiles onto the metal surface[12].

In the following, either we treat both partial pressurespCO
and pO2

in (1) as variable control parameters or we assume
either the O2 partial pressure to be fixed or both partial pres-
sures to be fixed and treat as the case may be the remaining
partial pressure(s) and in either case the local temperature
Tsx,td as control inputs. It has already been shown numeri-
cally and experimentally that spatiotemporal pattern forma-
tion can be influenced by varying these parameters
[9,11,12,17]. However, a control of spatiotemporal surface
reaction dynamics with respect to specific desired and pre-
specified control aims and the treatment of several param-
eters as control inputs at the same time have not yet been
analyzed, either experimentally or theoretically.

Here, we show that the application of advanced numerical
optimization methods can help in addressing the question of
specific external control of chemical surface reactions if ac-
curate models are available. We formulate our desired con-
trol aims as objective functionals to be minimized, contain-
ing a least square deviation between observed and desired
dynamical behavior or other performance criteria in a suit-
able mathematical formulation. For our model study of CO
oxidation on Pt we assume here that it is possible to control
the CO and O2 gas phase pressures in a piecewise constant
fashion with temporal switching points and the local surface
temperature in separated small surface domains by time
varying laser light illumination with different operating
power. Using this laser illumination procedure it is reason-
able to assume that the temperature can be varied in the
range 10 K above the background temperature of the whole
system[12] which is held constant atT=540 K here. We
further assume that each spatial domain can be heated or
cooled between 540 and 550 K independent of the neighbor-
ing domains and the surrounding temperature(which means
neglecting both heat conduction within the catalytic Pt sur-
face and heat radiation into the gas phase) and that the local

temperature rises or falls linearly with time between two
heating set points. In many cases these are of course only
rough approximations because heat conduction through the
metal surface is fast, but to keep the control system concise
the approximations are reasonable here and not too far from
reality for a first model study. Later it will be possible to
include more detailed models for heat conduction and/or heat
radiation but the computational effort will be much more
extensive if spatiotemporal dynamics for the temperature are
included as well. Furthermore, we do not claim that quanti-
tative transfer of our results to experiments is immediately
possible at the present modeling stage. Our model is highly
simplified mainly because it neglects heat transport and di-
rect application to a potential experiment will most probably
require a more detailed modeling approach.

Here, our primary aim is to demonstrate what is in prin-
ciple possible by model based optimal control of surface
reaction dynamics on the basis of this simplified spatiotem-
poral model. In order to model our target control problem
with prespecified desired control aims we formulate the gen-
eral optimal control problem

minpCOstd,pO2
std,Tsx,tdE

0

tend

Lsx,pCO,pO2
,T,tddt s2d

subject to

]u

]t
= DDu + k1pCOstdsCOs1 − u3d − k2u − k3uv,

]v
]t

= k4pO2
stdfs131w + s132s1 − wdgs1 − u − vd2 − k3uv,

]w

]t
= k5S 1

1 + expfsu0 − ud/dug
− wD , s3d

ki = Aie
−EA

i /RTsx,td si = 2,3,5d, us0,xd = u0sxd,

vs0,xd = v0sxd, ws0,xd = w0sxd,

x P f0,Lg, t P f0,tendg,

Tl ø T ø Tu,

pl ø pCO,pO2
ø pu.

Here, Lsx,pCO,pO2
,T,td, the so called Lagrangian func-

tional, describes either a specific desired dynamical behavior
of surface coverages in the CO oxidation system on Pt,
which is supposed to be induced in the system by appropriate
variation of the control variablesTsx,tdP fTl ,Tug andpCOstd,
pO2

stdP fpl ,pug within a given range, or a more general op-
timal performance criterion like the maximization of the

MANIPULATION OF SURFACE REACTION DYNAMICS… PHYSICAL REVIEW E 70, 051609(2004)

051609-3



overall reaction rate. We will present results for three differ-
ent realizations ofLsx,pCO,pO2

,T,td: (a) Lsx,pCO,pO2
,T,td

=e0
Lfusx,td− ûsx,tdg2dx; (b) Lsx,pCO,pO2

,T,td=oi=1
n fusxi ,td

−usxx+1,tdg2, xi P f0,Lg; and (c) Lsx,pCO,pO2
,T,td

=−e0
Lk3sTdusx,tdvsx,tddx.

In the scenario(a) a prespecified spatial distribution of the
local CO coverage on Pt is supposed to be induced and sta-
bilized during the oxidation reaction. In our examples
ûsx,td;const corresponds to an arbitrary homogeneous cov-
erage of CO. In the scenario(b) the difference in temporal
dynamics of the CO coverage between two or more distinct
positionssxi , i =1, . . . ,n+1d on the Pt surface is minimized,
which corresponds to a synchronization of reaction sites. In
our examples, we show results forn=1,2,3. Scenario(c)
corresponds to the maximization of the global reaction rate
of CO oxidation(averaged over the whole 1D surface area),
which can be used to optimize product yield or selectivities
in the case of several possible reaction products.

III. NUMERICAL METHODS

In order to solve the optimal control problem(2) and (3)
numerically we choose the so called direct approach[34]
which is based on a projection of the infinite dimensional
optimization problem in function space to a finite dimen-
sional approximation by discretizing the objective functional
(2) and the differential equation constraints(3) and param-
etrizing the control functionspCOstd, pO2

std, Tsx,td. Accord-
ing to the method of lines, for the spatial discretization of the
reaction-diffusion model equations we use second order fi-
nite differences for the Laplacian with a step sizeh=0.004
on a spatial domainf0,Lg=f0,0.08g corresponding to 80mm
and assume zero fluxvon Neumannboundary conditions. In
order to account for the spatial dependence of the tempera-
ture Tsx,td we use a collocation discretization on the same
grid as for the differential equations. This scenario would
approximate a quasi-1D experiment with a Pt wire.

In principle the resultingm-dimensional(herem=60) sys-
tem of ordinary differential equations can then be treated by
common numerical ODE integration decoupling the optimi-
zation in a separate loop. The optimal control problem could
be solved by numerical simulations of this dynamical system
with fixed initial values for the control variables and subse-
quent determination of a descent direction for the objective
functional. This can be done by providing derivative infor-
mation for the objective functional with respect to the control
parameters and applying appropriate derivative based mini-
mization methods. This yields stepwise new control values
for the simulation and the next iteration loop starts. The pro-
cedure is repeated until a suitable convergence criterion is
satisfied.

However, this so called sequential(single shooting) ap-
proach[34] is often problematic if instabilities or even cha-
otic behavior are involved in the underlying dynamical sys-
tems [35] because in modern derivative based optimization
methods sensitivities with respect to control parameters in
the form of accurate derivatives have to be computed nu-
merically. In case of unstable dynamical modes that may be

excited by the controls this procedure is highly error prone,
or sometimes even impossible. Therefore, in such cases the
so called multiple shooting approach[36] is much more suit-
able and yields excellent convergence results for pattern
forming systems like the CO oxidation on Pt[31] studied
here or similar systems[28].

In a multiple shooting discretization the time interval
f0,tendg is discretized on a rather coarse time grid(grid points
are called multiple shooting nodes) and on each of the sub-
intervals an initial value problem is solved by numerical in-
tegration as in the direct single shooting approach described
before. For the control functions a piecewise parametrization
on each multiple shooting interval is chosen(for example,
piecewise linear polynomials). In addition to these control
variables the initial values of the state variables(u, v, w in
the CO oxidation model) at the multiple nodes area priori
unknown. In order to assure continuity of the state trajecto-
ries, equality constraints for the multiple shooting nodes are
added to the optimization problem. These additional con-
straints guarantee that in the solution of the optimal control
problem the end value of the preceding multiple shooting
interval is equal to the initial value of the following interval,
which corresponds to the continuity of the state trajectory.
Although it seems as if one has simply blown up the problem
by introducing additional variables it can be shown that the
multiple shooting optimal control problem can be solved
very efficiently by exploiting its mathematical structure[36].
Furthermore, if available,a priori information about the op-
timal trajectories can be included into the algorithm at mul-
tiple nodes, which results in a significant speedup of conver-
gence. The problems with instabilities and numerical
computation of sensitivities in derivative based optimization
algorithms are significantly reduced because of the restric-
tion to subproblems on small time subintervals. The smaller
the multiple shooting intervals the more is the probability of
potential explosions of dynamical modes reduced, and as a
consequence the more stable and accurate are the numerical
computations of derivatives.

The multiple shooting algorithm that is used throughout
the paper is implemented in the optimal control package
MUSCOD-II [36,37] including the backward differentiation
formulas (BDF) integrator DEASOL [38,39] for error con-
trolled solution of stiff ordinary differential or differential
algebraic equations(DAEs). Since a detailed description of
the numerical optimal control algorithm would go far beyond
the scope of the presented work, we have to refer to the
literature[37] for a comprehensive up-to-date treatment.

IV. SIMULATIONS

The system(3) has been analytically and numerically ana-
lyzed in detail before[30,32]. Using the BDF codeDAESOL

[38,39] we performed numerical simulations of the above
model system under various conditions in order to verify the
dynamical behavior over long time horizons. In particular,
for suitable parameter values and initial conditions proposed
in [15] we reproduced spatiotemporal chaos in the form of
amplitude and phase turbulence. These arise from the fact
that uniform oscillations observed in the homogeneous case
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are unstable with respect to small spatial perturbations of the
CO surface coverage. Thus, amplitude and phase coherence
get lost due to destabilization by diffusion coupling of local
CO coverages[15].

The minute verification of the dynamics by numerical
simulations with error control is crucial for any dynamical
system in the optimization context because derivative based
multiple shooting optimal control methods require highly ac-
curate numerical integration. The numerical integration rou-
tines generate sensitivity information with respect to param-
eter and control variables. Therefore, advanced and stable
numerical integrators with error control have to be used. It is
not necessarily evident in all cases of pattern formation due
to system instabilities that all numerical results from earlier
studies can be reproduced quantitatively using these integra-
tors, because in the literature often numerical integration
methods are used, which are not suitable to account for the
numerical requirements to optimize unstable dynamical sys-
tems. In many cases explicit methods like the forward Euler
method are prohibited in an optimization approach because
they are numerically unstable for various types of stiff dif-
ferential equations[40]. Even if the numerical integration is
stable for a choice of small time steps, explicit methods often
produce a large and hardly controllable numerical error for
longer integration times[40]. This is mostly due to the fail-
ure of explicit methods to damp even error modes, which are
stable for the original nonlinear system under consideration.
In such cases the instabilities observed in numerical simula-
tions are a superposition of numerical instabilities and the
unstable character of the dynamical system itself and thus
instability effects and patterns may be largely amplified.

Our simulation results(data not shown) for the 1D spa-
tiotemporal CO oxidation model qualitatively reproduce the
results from[15] very well except for minor differences in
bifurcation point values for the parameters.

V. OPTIMAL CONTROL RESULTS

We set up several control scenarios which may be inter-
esting in applications of catalytic surface reactions. The first
is the induction and stabilization of a desired uniform surface
coverage for a chemical species in a given surface domain,
control scenario(a), Figs. 1 and 2; the second a synchroni-
zation of remote reaction sites, control scenario(b), Figs.
3–5; and the third the maximization of the overall conversion
rate of CO to CO2, control scenario(c), Fig. 6. In the tem-
perature range between 540 and 550 K, the uncontrolled sys-
tem shows in numerical simulations either oscillatory or
bistable behavior depending on the exact temperature value.
In the bistable regime a mainly oxygen covered, reactive
steady state and a nonreactive mainly CO covered steady
state coexist, and it depends on the initial conditions to
which asymptotic state the system is attracted. The control
scenarios(a)–(c) treated here and their mathematical formu-
lations have been introduced at the end of Sec. II.

In the cases(a) and(c) random distributions of local sur-
face coverages of CO and O2 have been chosen as the initial
condition for the simulation and optimization. In scenario(b)
a simulation was performed over a long time horizon

stend.3000d and after chemical turbulence with loss of phase
and amplitude coherence had been observed a snapshot of
the variablesusx,td, vsx,td, wsx,td was taken at an arbitrary
time point. These values were used as warm start initial con-
ditions for the synchronization optimal control problem in
scenario(b).

According to scenario(a) in our first example we induce a
prespecified uniform surface coverage of CO. The tempera-
ture distributionTsx,td and either the partial pressurepCO or
both partial pressurespCO andpO2

are treated as control vari-
ables. Depending on the prespecified value forûsx,td it
turned out to be impossible to stabilize arbitrary surface cov-
erages by varying the temperature field and one gas phase
partial pressure alone while keeping the other pressure fixed.
By varying the local temperature and the CO partial pressure
it is possible to induce uniform CO coverages between 0.4
and 0.6. Values between 0.2 and 0.8 can be induced by al-
lowing the O2 partial pressure as a variable input control as
well. Here, we exemplarily present two scenarios with the

FIG. 1. Induction and stabilization of a constant surface cover-
ageûsx,td;0.6 by controlling the CO partial pressure and the local
surface temperature according to control scenario(a) (see Sec. II,
starting from random initial surface coverage.O2 partial pressure
pO2

std;9310−5 mbar fixed. Control parameters:(a) 543 K
øTistdø545 K; Tistd , i =1, . . . ,19, corresponds to the local surface
temperature in the discretization celli; (b) 1310−5 mbarøpCOstd
ø10310−5 mbar. The figure showsTistd for a selection of i
P h0, . . . ,19j, pCOstd, and the CO surface coverageusx,td for se-
lected representative time points betweent=1 andt=4. Time t in
seconds, spatial coordinatex in micrometers, partial pressurepCO in
10−5 millibars, temperatureT in Kelvin.
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target values 0.6 and 0.2. In the first case the local tempera-
ture and the CO pressure are treated as control parameters
whereaspO2

is fixed. As can be seen from Fig. 1, the CO
partial pressure in the optimal solution is approximately con-
stant and even if it is fixed in the optimal control problem,
quite good results for the induction of a uniform coverage
ûsx,td;0.6 with small deviations can be achieved. In the
second casefûsx,td;0.2g it turned out that with the O2 par-
tial pressure fixed, in the optimal solution for stabilizing a
coverage value of 0.2 moderate amplitude oscillations about
this value occur. AllowingpO2

as an additional control vari-
able, the 0.2 state can be induced and stabilized accurately
(Fig. 2).

The second control scenario(b) corresponds to the dy-
namical synchronization of reaction sites(Figs. 3–5). Here,
we treat only the temperature distributionTsx,td as a control
variable, allowing values between 543 and 545 K, while fix-
ing both gas phase partial pressurespCO and pO2

at values
which lead in the uncontrolled case to unstable oscillatory
dynamics in simulations of the surface reaction model. With-

out any external control in this case the uniform relaxation
oscillations observed under the adjusted conditions are un-
stable with respect to small perturbations. Chemical turbu-
lence due to a destabilizing effect of diffusive coupling be-
tween local oscillators on the Pt surface is observed, which
becomes obvious in the loss of amplitude and phase coher-
ence of distinct surface sites. We show that our optimal con-
trol approach allows the synchronization of several remote
reaction sites. We choose two, three, or four arbitrary reac-
tion sites represented as grid cells in the spatial discretization
of the PDE model(3) and formulate their synchronization as
a least square deviation(in the case of more than two reac-
tion sites an equally weighted multiobjective sum of least

FIG. 2. Induction and stabilization of a constant surface cover-
ageûsx,td;0.2 by controlling the CO and O2 partial pressures and
the local surface temperature according to control scenario(a) (see
Sec. II), starting from random initial surface coverage. Control pa-
rameters:(a) 540 KøTistdø550 K; Tistd , i =1, . . . ,19, corresponds
to the local surface temperature in the discretization celli; (b) 1
310−5 mbarøpCOstdø8310−5 mbar; (c) 1310−5 mbarøpO2

std
ø10310−5 mbar. The figure showsTistd for a selection of i
P h0, . . . ,19j, pCOstd, and the CO surface coverageusx,td for se-
lected representative time points betweent=1 andt=4. Time t in
seconds, spatial coordinatex in micrometers, partial pressurespCO

andpO2
in 10−5 millibars, temperatureT in Kelvin.

FIG. 3. Synchronization of two different reaction sitesx5 andx15

on the Pt(110) surface according to control scenario(b) (see Sec. II)
by variation of the local surface temperature, starting from values in
the turbulence regime of the CO oxidation on Pt(110) [15]. Partial
pressurespCOstd;4.81310−5 mbar and pO2

std;13310−5 mbar
fixed. Control parameter 543 KøTistdø545 K; Tistd , i =1, . . . ,19,
corresponds to the local surface temperature in the discretization
cell i. The figure showsTistd for a selection ofi P h0, . . . ,19j and
the CO coverage dynamicsusxi ,td , i =1,5,10,15,19;xi corresponds
to the spatial discretization celli (spatial coordinatei 34 mm).
Time t in seconds, temperatureT in Kelvin.
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squares) between the CO coverages at these sites as a func-
tion of time [see control scenario(b) in Sec. II]. Figures 3–5
show the numerical results. It is obviously possible to syn-
chronize the reaction sites with high accuracy.

The third control scenario(c) is the maximization of the
overall reaction rate for the CO oxidation(Fig. 6). Here, the
numerical result looks trivial as the optimal controls are con-
stant functions for all control variablesTsx,td, pCOstd, pO2

std.
But this does not necessarily have to be the casea priori
because in a given accessible range of parameters the spa-
tiotemporal coupling between reaction sites can give rise to
island formation of reactants, leading to inhibition of the

overall kinetics. This is known for the CO oxidation on Pt
[15] but a more realistic model study would require the mod-
eling of a much larger spatial domain and two spatial dimen-
sions. Such 2D extensions of the PDE model(3) require
different methods for treating the very large scale optimiza-
tion problems arising from the discretization of the spatial
domain, which are part of our current research activities.
Future perspectives in that direction will be addressed in the
next section. Despite our rather trivial results for control sce-
nario (c) here, in particular for several competing reactions,
the optimization of reaction rates and selectivities is a prob-

FIG. 4. Synchronization of three different reaction sitesx5std,
x10std, and x15std on the Pt(110) surface according to control sce-
nario (b) (see Sec. II) by variation of the local surface temperature,
starting from values in the turbulence regime of the CO oxidation
on Pt(110) [15]. Partial pressurespCOstd;4.81310−5 mbar and
pO2

std;13310−5 mbar fixed. Control parameter 543 KøTistd
ø545 K; Tistd , i =1, . . . ,19, corresponds to the local surface tem-
perature in the discretization celli. The figure showsTistd for a
selection of i P h0, . . . ,19j and the CO coverage dynamics
usxi ,td , i =1,5,10,15,19;xi corresponds to the spatial discretization
cell i (spatial coordinatei 34 mm). Time t in seconds, temperature
T in Kelvin.

FIG. 5. Synchronization of four different reaction sitesx1std,
x5std, x10std, andx15std on the Pt(110) surface according to control
scenario(b) (see Sec. II) by variation of the local surface tempera-
ture, starting from values in the turbulence regime of the CO oxi-
dation on Pt(110) [15]. Partial pressurespCOstd;4.81310−5 mbar
and pO2

std;13310−5 mbar fixed. Control parameter 543 K
øTistdø545 K; Tistd , i =1, . . . ,19, corresponds to the local surface
temperature in the discretization celli. The figure showsTistd for a
selection of i P h0, . . . ,19j and the CO coverage dynamics
usxi ,td , i =1,5,10,15,19;xi corresponds to the spatial discretization
cell i (spatial coordinatei 34 mm). Time t in seconds, temperature
T in Kelvin.
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lem of general interest in heterogeneous catalysis. An intui-
tive approach without using modeling and numerical optimi-
zation seems hopeless due to the systems’ complexity and
the high degree of nonlinearity and spatial coupling.

VI. SUMMARY AND DISCUSSION

We show the value of advanced mathematical optimal
control methods in combination with accurate models to deal
with optimum performance tasks and more generally control
of spatiotemporal surface reaction dynamics in heteroge-
neous catalysis. For that purpose we study a widely accepted
and rather simple but highly nonlinear model for CO oxida-
tion on a single crystal Pt(110) surface. The experimentally
well accessible parameters of local surface temperature and
reactant gas phase pressures are chosen as input control vari-
ables. Neglecting heat transport processes, we do not claim
quantitative access to the real system with our first model

based approach, but we primarily demonstrate what is pos-
sible while keeping the model concise in order to make the
numerical solution tractable in reasonable time. The results
offer perspectives for wide ranging applications. In principle,
more detailed models can be treated in a straightforward
way, but the computational effort involved in the solution of
very large scale optimization problems calls for further de-
velopment of sophisticated numerical methods and the use of
high performance parallel computers.

In experimental applications a further crucial aspect is the
consideration of model deviations, noise, perturbations, and
uncertainties. An accurate treatment of these effects in a de-
terministic modeling approach requires either online compu-
tations linking system observation with model parameter
identification or robust feedback control methods which are
rather insensitive to changes in model parameters and noise.

Carefully designed nonlinear model predictive control
(NMPC) strategies meet some of these requirements[26,41]
and are promising for a real-time feedback optimal control of
technical processes. They have already been successfully ap-
plied to ODE and DAE models[42]. But for PDE applica-
tions the severe real-time restriction is still a strongly limit-
ing factor. In ongoing research activities we recently applied
NMPC strategies to a feedback control scenario for a 1D
PDE model[43] and showed that desired spatiotemporal dy-
namics can be induced into the system taking into account
noise and perturbations, but the computational effort is ex-
tensive and at present a real-time application seems only pos-
sible for systems with rather slow spatiotemporal dynamics
on a time scale of minutes rather than seconds. But undoubt-
edly future methodical developments and further progress in
high performance computer capacities will sometime enable
online applications of model predictive control for many
technical processes on the basis of detailed mathematical
models.

A possible direct extension of the methods presented here
involves the use of parallel computers. The multiple shooting
approach used in our optimal control methods which is dis-
cussed in detail in Sec. III is highly suitable for paralleliza-
tion, because the numerical integrations on each multiple
shooting interval can be decoupled. In particular, numerical
optimal control of 2D PDEs and the treatment of NMPC
feedback control scenarios can greatly benefit from the use
of parallel computers. Once these problems are tractable in
real time the ongoing development of experimental tools for
microscopic observation and manipulation of surface reac-
tions will undoubtedly offer wide ranging possibilities for
design and optimum operation ofimportant catalytic pro-
cesses with complex spatiotemporal dynamics.

With the help of modern surface analysis techniques like,
for example, photoelectron emission microscopy(PEEM)
[44], an experimental setting for variable adjustment of gas
pressures and local laser surface heating as described in[12],
it should in principle be possible to control the pressure vari-
ables and the surface temperature profiles according to the
computational results of a real-time version of our optimal
control approach. The initial values for the numerical algo-
rithm then have to be provided by actual measurement values
for surface coverage distributions and the algorithm has to be

FIG. 6. Optimization of the overall reaction rate of the CO oxi-
dation averaged over the modeled surface area(80 mm) according
to control scenario(c) (see Sec. II), starting from random initial
surface coverage. Control parameters:(a) 540 KøTistdø550 K;
Tistd , i =1, . . . ,19 corresponds to the local surface temperature in
the discretization celli; (b) 1310−5 mbarøpCOø8310−5 mbar;
(c) 1310−5 mbarøpO2

ø10310−5 mbar. The figure showsT5std
[all other control functionsTistd , i P h0, . . . ,19j, are equivalent to
T5std] andpCOstd. Time t in seconds, partial pressurespCO andpO2
in 10−5 millibars, temperatureT in Kelvin.
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repeated iteratively in a moving time horizon manner if new
measurement results are available. This would mean using
the model predictions as a basis for controller design over a
small time horizon between two measurement points. Updat-
ing by reference to real measured values introduces some
sort of feedback into the control approach. The experimental
implementation of a similar real-time optimal control based
on the multiple shooting algorithm applied in the present
work has already been described for a distillation column in
[42]. However, a restriction is that with computer power
presently available the control functions have to be com-

puted online and in real time related to the system’s dynam-
ics, which requires very efficient exploitation of suitable nu-
merical methods.
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